Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cureus ; 14(11): e31310, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2164188

ABSTRACT

Drug rash with eosinophilia and systemic symptoms (DRESS) syndrome is a rare drug reaction that commonly presents with rash, fever, lymphadenopathy, eosinophilia, and multiorgan involvement. We present a case of this syndrome in a 31-year-old male who presented with a diffuse erythematous morbilliform rash with high fever and elevated liver enzymes. Upon history taking, the patient reported acute onset of multiple seizures that required intubation and ICU admission six weeks prior, which started 24 hours after receiving the Johnson and Johnson Janssen coronavirus disease 2019 (COVID-19) vaccine. During that hospitalization, he was given antiseizure medications Keppra (levetiracetam) and Dilantin (phenytoin), which he was eventually discharged home with. During our encounter with the patient, Dermatology was consulted and recommended punch skin biopsy, which revealed spongiotic dermatitis with subcorneal pustules along with superficial perivascular and mixed lymphocytic and neutrophilic infiltrate with dermal edema and rare eosinophils. Given these findings in conjunction with the patient's fever, elevated liver function, and cervical lymphadenopathy, the rash was consistent with DRESS syndrome or a pustular drug eruption likely secondary to phenytoin or levetiracetam. This case was eventually resolved with treatment with oral and topical corticosteroids and close outpatient follow-up with Dermatology. Prompt diagnosis and treatment of DRESS syndrome are therefore critical as the mortality rate can be as high as 10% in the setting of liver failure.

2.
Microbiol Spectr ; : e0230522, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2078747

ABSTRACT

Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial coinfection, and determining illness severity since current practices require separate workflows. Here, we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and bacterial coinfections and predicting clinical severity of COVID-19. A total of 161 patients with PCR-confirmed COVID-19 (52.2% female; median age, 50.0 years; 51% hospitalized; 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene blood RNA), and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter. The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrollment, and the remaining patients oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial coinfection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e., Clostridioides difficile colitis (n = 1), urinary tract infection (n = 1), and clinically diagnosed bacterial infections (n = 3), for a specificity of 99.4%. Two of 101 (2.8%) patients in the IMX-SEV-3 "Low" severity classification and 7/60 (11.7%) in the "Moderate" severity classification died within 30 days of enrollment. IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19 and bacterial coinfections and predicted patients' risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management, including more accurate treatment decisions and optimized resource utilization. IMPORTANCE We assay the utility of the single-test IMX-BVN-3/IMX-SEV-3 classifiers that require just 2.5 mL of patient blood in concurrently detecting viral and bacterial infections as well as predicting the severity and 30-day outcome from the infection. A point-of-care device, in development, will circumvent the need for blood culturing and drastically reduce the time needed to detect an infection. This will negate the need for empirical use of broad-spectrum antibiotics and allow for antibiotic use stewardship. Additionally, accurate classification of the severity of infection and the prediction of 30-day severe outcomes will allow for appropriate allocation of hospital resources.

3.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1932894

ABSTRACT

BACKGROUNDProlonged symptoms after SARS-CoV-2 infection are well documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with biomarkers are points that remain elusive.METHODSAdult SARS-CoV-2 reverse transcription PCR-positive (RT-PCR-positive) patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to 1 year after diagnosis; they completed symptom surveys and underwent blood draws and nasal swab collections at each visit.RESULTSOur cohort (n = 617) ranged from asymptomatic to critical COVID-19 infections. In total, 40% of participants reported at least 1 symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days; median time from diagnosis to sustained symptom resolution with no recurring symptoms for 1 month or longer was 214 days. Anti-nucleocapsid IgG level in the first week after positive RT-PCR test and history of lung disease were associated with time to sustained symptom resolution. COVID-19 disease severity, ethnicity, age, sex, and remdesivir use did not affect time to sustained symptom resolution.CONCLUSIONWe found that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration.TRIAL REGISTRATIONClinicalTrials.gov, NCT04373148.FUNDINGNIH UL1TR003142 CTSA grant, NIH U54CA260517 grant, NIEHS R21 ES03304901, Sean N Parker Center for Allergy and Asthma Research at Stanford University, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative, Sunshine Foundation, Crown Foundation, and Parker Foundation.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Immunoglobulin G , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
4.
JCI Insight ; 7(12)2022 06 22.
Article in English | MEDLINE | ID: covidwho-1902169

ABSTRACT

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor-stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.


Subject(s)
COVID-19 , Interferon Type I , Humans , Lung , SARS-CoV-2 , Sputum
5.
Mach Learn Appl ; 9: 100328, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1851802

ABSTRACT

Origin of the COVID-19 virus (SARS-CoV-2) has been intensely debated in the scientific community since the first infected cases were detected in December 2019. The disease has caused a global pandemic, leading to deaths of thousands of people across the world and thus finding origin of this novel coronavirus is important in responding and controlling the pandemic. Recent research results suggest that bats or pangolins might be the hosts for SARS-CoV-2 based on comparative studies using its genomic sequences. This paper investigates the SARS-CoV-2 origin by using artificial intelligence (AI)-based unsupervised learning algorithms and raw genomic sequences of the virus. More than 300 genome sequences of COVID-19 infected cases collected from different countries are explored and analysed using unsupervised clustering methods. The results obtained from various AI-enabled experiments using clustering algorithms demonstrate that all examined SARS-CoV-2 genomes belong to a cluster that also contains bat and pangolin coronavirus genomes. This provides evidence strongly supporting scientific hypotheses that bats and pangolins are probable hosts for SARS-CoV-2. At the whole genome analysis level, our findings also indicate that bats are more likely the hosts for the COVID-19 virus than pangolins.

6.
Open Forum Infect Dis ; 9(2): ofab646, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1672245

ABSTRACT

Determinants of Post-Acute Sequelae of COVID-19 are not known. Here we show that 83.3% of patients with viral RNA in blood (RNAemia) at presentation were symptomatic in the post-acute phase. RNAemia at presentation successfully predicted PASC, independent of patient demographics, worst disease severity, and length of symptoms.

7.
Mater Today Adv ; 13: 100211, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1650675

ABSTRACT

SARS-CoV-2 presence in wastewater has been reported in several studies and has received widespread attention among the Wastewater-based epidemiology (WBE) community. Such studies can potentially be used as a proxy for early warning of potential COVID-19 outbreak, or as a mitigation measure for potential virus transmission via contaminated water. In this review, we summarized the latest understanding on the detection, concentration, and evaluation of SARS-CoV-2 in wastewater. Importantly, we discuss factors affecting the quality of wastewater surveillance ranging from temperature, pH, starting concentration, as well as the presence of chemical pollutants. These factors greatly affect the reliability and comparability of studies reported by various communities across the world. Overall, this review provides a broadly encompassing guidance for epidemiological study using wastewater surveillance.

8.
Front Public Health ; 9: 638316, 2021.
Article in English | MEDLINE | ID: covidwho-1367762

ABSTRACT

Vaccine bears hope to bring COVID-19 pandemic under control. With limited supply, vaccines must be utilized efficiently to provide protection to those who need it most. Currently, no practical framework has been proposed to ensure fair vaccine allocation at individual level, which is a recognized problem. We propose here an evidence-based decision-making framework for COVID-19 vaccine appropriation that prioritizes vaccine doses to individuals based on their immunological status, or immuno-triaging. To ensure successful implementation of the proposed framework, point-of-care (POC) immunodiagnostic testing is needed to quickly ramp up the testing capability. Considerations for deploying POC immunodiagnostic testing at such a large scale are discussed. We hope that the proposed immunological decision-making framework for evidence-based COVID-19 vaccine appropriation provides an objective approach to ensure fair and efficient utilization of the scarce vaccine resource at the individual level that also maximizes the collective societal benefit.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2 , Vaccination
9.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: covidwho-1269483

ABSTRACT

Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.


Subject(s)
COVID-19/blood , COVID-19/immunology , Immunity, Innate/physiology , Adult , Aged , COVID-19/genetics , COVID-19/mortality , Case-Control Studies , Cytokines/genetics , Epigenesis, Genetic , Female , Hematopoiesis , Humans , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Male , Middle Aged , Monocytes/pathology , Monocytes/virology , NF-kappa B/metabolism , Neutrophils/pathology , Neutrophils/virology , Proteomics , Severity of Illness Index , Single-Cell Analysis
10.
ACS Cent Sci ; 7(4): 650-657, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1225484

ABSTRACT

Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-CoV-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate signaling of the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19.

11.
Clin Infect Dis ; 74(2): 218-226, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1216637

ABSTRACT

BACKGROUND: The determinants of coronavirus disease 2019 (COVID-19) disease severity and extrapulmonary complications (EPCs) are poorly understood. We characterized relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNAemia and disease severity, clinical deterioration, and specific EPCs. METHODS: We used quantitative and digital polymerase chain reaction (qPCR and dPCR) to quantify SARS-CoV-2 RNA from plasma in 191 patients presenting to the emergency department with COVID-19. We recorded patient symptoms, laboratory markers, and clinical outcomes, with a focus on oxygen requirements over time. We collected longitudinal plasma samples from a subset of patients. We characterized the role of RNAemia in predicting clinical severity and EPCs using elastic net regression. RESULTS: Of SARS-CoV-2-positive patients, 23.0% (44 of 191) had viral RNA detected in plasma by dPCR, compared with 1.4% (2 of 147) by qPCR. Most patients with serial measurements had undetectable RNAemia within 10 days of symptom onset, reached maximum clinical severity within 16 days, and symptom resolution within 33 days. Initially RNAemic patients were more likely to manifest severe disease (odds ratio, 6.72 [95% confidence interval, 2.45-19.79]), worsening of disease severity (2.43 [1.07-5.38]), and EPCs (2.81 [1.26-6.36]). RNA loads were correlated with maximum severity (r = 0.47 [95% confidence interval, .20-.67]). CONCLUSIONS: dPCR is more sensitive than qPCR for the detection of SARS-CoV-2 RNAemia, which is a robust predictor of eventual COVID-19 severity and oxygen requirements, as well as EPCs. Because many COVID-19 therapies are initiated on the basis of oxygen requirements, RNAemia on presentation might serve to direct early initiation of appropriate therapies for the patients most likely to deteriorate.

12.
Prehosp Emerg Care ; : 1-10, 2021 May 06.
Article in English | MEDLINE | ID: covidwho-1165151

ABSTRACT

Objective: Firefighter first responders and other emergency medical services (EMS) personnel have been among the highest risk healthcare workers for illness during the SARS-CoV-2 pandemic. We sought to determine the rate of seropositivity for SARS-CoV-2 IgG antibodies and of acute asymptomatic infection among firefighter first responders in a single county with early exposure in the pandemic. Methods: We conducted a cross-sectional study of clinically active firefighters cross-trained as paramedics or EMTs in the fire departments of Santa Clara County, California. Firefighters without current symptoms were tested between June and August 2020. Our primary outcomes were rates of SARS-CoV-2 IgG antibody seropositivity and SARS-CoV-2 RT-PCR swab positivity for acute infection. We report cumulative incidence, participant characteristics with frequencies and proportions, and proportion positive and associated relative risk (with 95% confidence intervals). Results: We enrolled 983 out of 1339 eligible participants (response rate: 73.4%). Twenty-five participants (2.54%, 95% CI 1.65-3.73) tested positive for IgG antibodies and 9 (0.92%, 95% CI 0.42-1.73) tested positive for SARS-CoV-2 by RT-PCR. Our cumulative incidence, inclusive of self-reported prior positive PCR tests, was 34 (3.46%, 95% CI 2.41-4.80). Conclusion: In a county with one of the earliest outbreaks in the United States, the seroprevalence among firefighter first responders was lower than that reported by other studies of frontline health care workers, while the cumulative incidence remained higher than that seen in the surrounding community.

SELECTION OF CITATIONS
SEARCH DETAIL